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This study evaluates how selective posterior rhizotomy (SPR) affects the motor control pattern of
children diagnosed with cerebral palsy (CP) by using polyelectromyography and gait performance.
Twenty-four spastic children diagnosed with CP aged 3 to 16 years old were included in this study.
Another twenty children diagnosed with CP who had only undergone rehabilitation were selected as the
control group. The children diagnosed with CP received polyelectromyography and gait analysis within
one month before treatment (SPR or only rehabilitation) and 9 months to 1 year after treatment. Gait
analysis included gait patterns and kinematic parameters. The gait patterns were scored by the shapes
of their gaitline and cyclogram. The motor control patterns were scored by their temporal and spatial
features using polyelectromyography. The cerebral palsy patients were divided into independent,
dependent, and non-ambulators groups. Motor control and gait patterns significantly improved after
SPR than when only rehabilitation was performed; positive changes were also observed in kinematic
parameters before and after SPR. In addition, although motor control after surgery significantly
improved in the independent and dependent ambulator groups (p<0.01), the non-ambulator group did
not. Closely examining the changes in their gaitlines and cyclograms revealed that the independent and
dependent ambulators significantly improved as well. Results in this study suggested that motor control
and gait patterns improved after SPR at around 1 year among the independent and dependent
ambulators groups. However, these progressions were insignificant in the non-ambulators group. (J
Rehab Med Assoc ROC 1999; 27(3): 103 — 115)
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characterized by abnormal control of movement or

posture, and is due to damage to the immature brain

before, at or shortly after birth . Upper motor neuron
INTRODUCTION . syndrome usually results in paresis, loss of dexterity, or

spasticity due to velocity-dependent disinhibition of tonic

Cerebral palsy (CP) refers to a group of disorders stretch reflexes and lack of selective motor and postural

control. The types of CP are defined according to
neuromotor deficits, including spastic, dyskinetic, ataxic,
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or mixed CP. Among them, the spastic form has received
the majority of attention.

Some degree of spasticity can be useful, particularly
in the lower limb, making it possible for the CP child to
transfer. However, in its advanced stages, spasticity
impedes residual muscular strength and functionally
disables the CP child. Moreover, clonus may intefere with
the individual's ability to walk or even rest. Treatment
alternatives for spasticity include physical therapy,
orthosis, medication, and surgery, including selective
posterior rhizotomy (SPR). Fasano et al. ! and Laitinen,
et al., ! performed SPR to pick up and section of the
abnormal firing rootlets by intra-operative stimulation of
the individual rootlets. The abnormal firing roots were
determined by the abnormal electromyographic (EMG)
response, such as through tetanic contraction or overflow
patterns. This procedure gained widespread acceptance after
Peacock and Arens [ moved the site of operation into the
lumbosacral canal (L2 to LS laminectomy) to ensure that the
lower sacral nerve roots involved in bowel and bladder
control would be preserved. That investigation achieved
dramatic success in relieving spasticity. Numerous
investigations having adopted this procedure conferred that
spasticity was significantly reduced and mobility and
self-care were improved ).

A related study has proposed that the afferent input
from the posterior nerve root ascends and synapses with
anterior horn cells at many levels of the brainstem nuclei,
thus providing a theoretical basis for the suprasegmental
reduction in spasticity observed following SPR .
Another investigation reported on loss or diminution of
H-reflexes in most patients with a reduction in tendon
reflexes postoperatively %,

However, as generally accepted that spasticity and
impaired motor control in CP children are separate and
distinct components of the upper motor neuron syndrome.
Extensive research on locomotor control in vertebrates !
has led to the conjecture that central pattern generators
(CPGs) interacting with sensory mechanisms generate the
basic rhythm of human locomotion !'"*'. The immature
locomotor pattern of newborn infants mainly reflects the
expression of these spinal mechanisms !'*. Supraspinal
control over these basic neural mechanisms increases
with age, enabling the development of a plantigrade gait
with significant modifications of the muscle activation

pattern in non-disabled children, whereas children with
CP retain the immature pattern. Thus, the movement
dyscoordina- tion during locomotion and postural
adjustments found in children with spastic CP appears to
be partially attributed to an injury of the supraspinal
motor systems influencing the later development and
refinement of motor patterns produced mainly at a lower
level in the motor system. Some studies have concluded
that the muscle activation patterns (EMG phasing) during
walking remained unchanged after SPR '],

This study compares the motor pattern of the CP
children pre-and postoperatively in the supine position rather
than walking to minimize the influence of weakness or poor
endurance of the leg muscles. Gait parameters are obtained
for comparison through simplified analysis using the

Computer DynoGraphy (CDG) system.

] METHODS ]

Subjects

The study group consisted of twenty-four children
diagnosed with spastic CP (16 boys and 8 girls), ranging
from between 3 and 16 years old. Twenty patients were
diagnosed with spastic diplegia and four were diagnosed
with spastic quadriplegia. Those patients were divided
into three groups: independent ambulators (n=10),
dependent ambulators (n=10) (requiring a walker, rollator
or crutches for assistance in walking), and
non-ambulators (n=4). The three non-ambulators had a
significant degree of spasticity in lower extremities, and
the motor abilities of those patients did not improve for
12 months even under rehabilitation program. After SPR,
all patients were involved in a rehabilitation program of
different intensities for about 9 months to 1 year. Another
twenty children diagnosed with CP who had only
rehabilitation (11 boys and 9 girls) were selected as the
control group; in addition, the content of therapy was
similar to that of the SPR group. Each child underwent
motor control assessment and gait analysis within 1
month before and 9 months to 1 year after treatment (SPR

or only rehabilitation).
Instrumentation

Myosystem 2000 (Noraxon Inc, Arizona, USA) was



utilized to acquire signals from nine channels, of which,
eight signals were from surface EMG on bilateral lower
limbs. The last channel was used to record the maneuvers
undertaken (event marker). The raw EMG electrical
signals were band-pass filtered (20-200Hz) and sampled
at 1000Hz. The signals were rectified and low-pass
filtered (with a cutoff frequency of 6 Hz). A computer-
assisted gait analysis system, CDG (Infotronic, Netherlands)
was used to assess the gait in all children. This system
consisted of a pair of instrumented shoes, a portable data
logger and a analysis computer. Each shoe was
instrumented with eight force sensors distributed over the
shoes as shown in Figure 2a. The forces exerted on each
sensor , as sampled at a rate of 50 Hz, were recorded by a
portable data logger over 20 seconds of the recording period.
Finally, the data logger was connected to the analysis
computer for data transmission and analysis.

Procedure for Brain Motor Control Assessment
(BMCA)

PEMG recordings were used to document volitional
maneuvers during a standardized protocol for BMCA as
described elsewhere '*'". Recordings were made using pairs
of Ag/AgCl surface electrodes 3 cm apart over the midline of
muscle bellies of the quadriceps, hamstring, tibialis anterior,
and triceps surae muscles of each leg. While lying
comfortably in the supine position on a firm bed, the children
were asked to do multi-joint movement: hip and knee flexion
and extension of each leg alternately with an event marker
for three times. Weight support of the leg by the examiner
was allowed in some dependent CP children.

Firing of muscles of the lower limbs (temporal
features) and the amplitudes of EMG activities (spatial
features) were analyzed. The temporal features included
co-activation of ipsilateral, contralateral, or bilateral
muscles during agonistic muscle firing. The EMG
activities was classified into appropriate and reduced
according to a 5-point quantification scale by Perry (4/4
is maximal, 3/4 is moderate, 2/4 is minimal, 1/4 is trace,
and 0/4 is no activity) ¥, The EMG activities were
considered as appropriate if amplitudes were larger than
minimal activities, or as reduced if not. PEMG patterns
were scored into seven patterns according to the temporal
and spatial features of EMG activities. Figure 1 shows the
temporal and spatial features of seven PEMG patterns: 1.
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appropriate  agonist  (quadriceps) activities  with
significant reciprocal inhibition of the antagonist
(hamstring); 2. appropriate agonist activities with
co-contraction in the distal muscles (tibialis and triceps
surae); 3. appropriate agonist activities with co-contraction in
the distal muscles and co-activation of bilateral muscles; 4.
appropriate agonist activities with co-contraction in both
proximal (quadriceps and hamstring) and distal muscles; 5.
appropriate agonist activities with co-contraction in both
proximal and distal muscles and co-activation of bilateral
muscles; 6. diffuse co-contraction and co-activation of all
muscles; and 7. reduced agonist activities with co-

contraction or co- activation of other muscles.
Procedure of Gait Analysis

CDG can provide the following gait parameters:
duration of the gait cycle (s), velocity (km/h) step length
(cm), cadence (steps/min), and double and single support
time (s). Using a tape measure, a staff member measured
the walking distance of a subject during a recording
period. These data were then input into analysis software
to calculate the average step length and walking speed of
the subject.

A CDG scoring system was also developed through
foot pattern recognition, as classified into four categories.
The gaitline patterns from fast enrollment were classified
into four scores: 1. normal (the gaitline from hindfoot to
forefoot with an adequate length of the gaitline); 2.
calcaneal gait ( the gaitline from hindfoot to forefoot, but
shorter in length than normal); 3. midfoot gait ( the
gaitline from the midfoot to forefoot, and remarkably
shorter than normal); and 4. tip-toe gait ( only forefoot
contact) (Fig. 3). The cyclogram patterns from the bipedal
phases were also graded into four scores: 1. normal (the
symmetric butterfly shape, the center located at midpoint
or less than 2 squares to the midpoint); 2. mild abnormal
(the cyclogram in an asymmetric butterfly shape, and the
center located more than 2 squares to the midpoint); 3.
moderate abnormal (the cyclogram in a triangular or
rectangular shape); and 4. severe abnormal ( the
cyclogram in an irregular shape) (Fig.4). While using the
foot pattern classification of children inflicted with CP,
our previous study proved that these four different
patterns in both gaitline and cyclogram were parallel

to the clinical evaluation by Minear’s Classification !'"’.
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Figure 1. The EMG activities of 7 patterns by brain motor control assessment (BMCA) during unilateral hip and knee
flexion and extension: (1) The normal EMG activities over ipsilateral proximal leg muscles; (2) the EMG
activities over ipsilateral proximal and distal muscles in reciprocal pattern (agonist > antagonist); (3) the EMG
activities over bilateral legs muscles, but more in proximal part in reciprocal pattern (agonist > antagonist,
ipsilateral > contralateral); (4) the EMG activities over both proximal & distal muscles of bilateral legs (agonist
> antagonist, proximal >distal); (5) the EMG activities increased in both proximmal & distal muscles of
bilateral legs (agonist > antagonist); (6) the EMG activities in both agonist and antagonist of muscles of
bilateral legs; (7) generalized decrease of EMG activities in all muscles.
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Figure 2. The position of the 8 load sensors on left and
right shoes of CDG system.

Data Analysis

Velocity and step length were normalized by the
subject’s body height. Double and single support time
were expressed as the percentage of the duration of the
gait cycle. Differences in the age, body height and body
weight between CP children with SPR and only
rehabilitation were compared with a Student’s t-test. A
paired t test was used to test the changes for velocity,
cadence, step length, double and single support time. In
addition, a non-parametric Wilcoxon signed rank test was
used to test the changes in gaitline, cyclogram, and
BMCA scores between, before and after treatment (with
SPR or only rehabilitation). Data were considered

statistically significant at a level of p<0.05.

] RESULTS ]

CP children with SPR and those who only had
rehabilitation did not significantly differ in terms of age,
body height and body weight (Table 1).

The changes in BMCA, gaitline, and cyclogram
patterns between two treatment strategies. are listed in
Tables 2 and 3. The BMCA, cyclogram and gaitline
patterns revealed that although CP children with SPR
(p<0.01)
improvement was made except for the cyclogram in CP

significantly ~ improved, no significant
children with rehabilitation. The walking velocity,
cadence, step length increased significantly after SPR

(p<0.05), but did not significantly change except for
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Table 1. The comparison in the age, body height
and body weight between CP children
with SPR and only rehabilitation

CP Children
Patients with Patients with P value
SPR rehabilitation
(n=24) (n=20)
Age (years) 6.4+3.7 51+£1.8 0.158
Body height (cm) 107.3 £19.5 101.4+139 0.257
Body weight (kg) 20.4+12.0 16252 0.135

groups

Parameters

Table 2. The changes in BMCA patterns between
two treatment strategies

BMCA

Categories of

Numbers of ~ Numbers of patients
Improvement . . . o
patients with SPR  with rehabilitation
(before—after)
(n=24) (n=20)

7—6 2 (8.3%)

6—6 5(20.8%) 1(5%)

5—5 5(25.0%) 4 (20%)

5—4 2 (4.2%)

5—3 7 (29.2%) 2 (10%)

4—4 3 (15%)

3—3 3 (12.5%) 5 (25%)

3—2 2 (10%)

2—) 3 (15%)

P value 0.002* 0.063

*: p<0.01; (before—after): the scores from before SPR or
rehabilitation to after SPR or rehabilitation

cadence before and after only rehabilitation (Table 4).
Table 5 lists the BMCA, cyclogram and gaitline
patterns compared between before and after SPR in CP
children. Although the independent and dependent
ambulator groups (p<0.05) significantly improved in
terms of motor control after surgery, the non-ambulator
group did not. According to the changes of cyclogram
and gaitline pattern in ambulatory children before and
after SPR, both the independent and dependent
ambulators groups (p<0.05) significantly improved. The
walking velocity, cadence, and step length significantly

increased in the dependent ambulators group after SPR
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(p<0.05), while the independent ambulators group
increased only in step length (p<0.05) (Table 6).

] DISCUSSION ]

This study has demonstrated that, although children
inflicted with SPR significantly improved in terms of the
BMCA and gaitline, CP children who had only undergone
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rehabilitation did not. McLaughlin et al (1994) observed
mean improvements post-SPR in muscle tone on the
modified Ashworth Scale in the lower extremities of
children inflicted with spastic diplegia and decreased
significantly in toe-walking gait ¥, Our previous study
reported a significant reduction in muscle tone in CP
children with SPR than in CP children who had only
rehabilitation ', In this study, our finding that gait

52668196.001

Hl CaETL fret

2. Mild abnormal

g 00 0k
ane: 20.00

L T

RIGHT

3. Remarkable abnormal

4. Severe abnormal

Figure 3. The gaitline patterns from the foot enrollment by computer DynoGraphy (CDG) were classified into 4 scores. 1.

normal ( the gaitline from the hindfoot to the forefoot with an adequate length of the gaitline); 2. calcaneal gait

(the gaitline from the hindfoot to the forefoot, but shorter in length than normal); 3. midfoot gait (the gaitline

from the midfoot to the forefoot, and remarkably shorter than normal); and 4. tip-toe gait (only forefoot

contact).
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Figure 4. The cyclogram patterns from the bipedal phases by computer DynoGraphy (CDG) were graded into 4 scores. 1.
normal (the symmetric butterfly shape, the center located at midpoint or less than 2 squares to the midpoint) ; 2.
mild abnormal (the cyclogram in an asymmetric butterfly shape, and the center located more than 2 squares to
the midpoint); 3. moderate abnormal (the cyclogram in a triangular or rectangular shape); and 4. severe
abnormal (the cyclogram in an irregular shape).
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Table 3. The changes in gaitline and cyclogram patterns between two treatment strategies

Gaitline

cyclogram

Categories of -
Number of patients

Number of patients

Number of patients Number of patients

Improvement . . e . ) o
with SPR with rehabilitation with SPR with rehabilitation
(before—after)
(n=20) (n=20) (n=20) (n=20)
4—4 1( 5%) 2(10%) 1( 5%) 2 (10%)
4—3 8 (40%) 2 (10%)
3—4 2(10%)
42 2 (10%)
3—3 7 (35%) 11(55%) 4 (20%) 5 (25%)
32 3 (15%) 2(10%) 5 (25%) 4 (20%)
3—1 1( 5%)
22 1( 5%) 1( 5%) 2 (10%) 7 (35%)
2—1 3 (15%) 2 (10%)
1—1 2(10%)
P value 0.001* 0.655 0.001* 0.014**

*: p<0.01; **: p<0.05; (before—after): the scores from before SPR or rehabilitation to after SPR or rehabilitation.

Table 4. The parameters of gait analysis by CDG
compared between before and after treatment
(SPR or only rehabilitation) in CP children

CP Children
Parameters Patients with  Patients without
SPR SRP
(n=20) (n=20)

Velocity (%oBH/sec)

Pre 3324171 48.31+26.9

Post 442417.1 50.3124.6

p value 0.007* 0.223
Cadence (steps/min)

Pre 83.3£26.1 10554274

Post 98.34+21.3 11044242

p value 0.013** 0.065
Step length (%BH)

Pre 21.0+7.0 26.449.0

Post 30.54+13.5 2477+74

p value 0.011** 0.204
Single support (%GC)

Pre 36.948.7 41.1+14.7

Post 343469 36.81+8.0

p value 0.192 0.257
Double support (%GC)

Pre 3544159 31.7+13.7

Post 3494133 34.0+11.7

p value 0.897 0.505

**: p<0.05; *: p<0.01; pre: before of SPR ( or only
rehabilitation); post: after of SPR (or only rehabilitation);
BH: body height; GC: gait cycle

Table 5. The BMCA, gaitline and cyclogram patterns
compared between before and after SPR in

CP children
CP Children
Independent Dependent Non-ambulators
ambulators ambulators (N=4)
(N=10) (N=10)
BMCA
Improved 6 5
Non-improved 4 5 4
p value 0.02%* 0.038%** 1.0
Gaitline
Improved 6 7 NA
Non-improved 4 3
p value 0.023%* 0.011%*
Cyclogram
Improved 5 6 NA
Non-improved 5 4
p value 0.025%* 0.014**

**: p<0.05; *: p<0.01; A Wilcoxon signed rank test was
used to compare between before and after SPR.



Table 6. The parameters of gait analysis by CDG
compared between before and after
treatment SPR in CP children.

CP Children
Parameters Independent Dependent
ambulators ambulators
(n=10) (n=10)
Velocity (%BH/sec)
Preoperative 38.1£15.7 28.0+18.0
Postoperative 49.0+10.5 39.3420.7
p value 0.088 0.044**
Cadence (steps/min)
Preoperative 92.84+22.2 74.5+28.0
Postoperative 99.84+19.1 94.0+26.1
p value 0.368 0.023**
Step length (%BH)
Preoperative 229477 18.0£5.1
Postoperative 30.0+£4.0 30.2+9.0
p value 0.041** 0.025%*
Single support (%GC)
Preoperative 3694113 33.8420.2
Postoperative 323+£73 37.5+175
p value 0.172 0.552
Double support (%GC)
Preoperative 35.0+6.9 38.94+10.1
Postoperative 35.6+4.1 33.1£8.9
p value 0.812 0.056

**: p<0.05; BH: body height; GC: gait cycle

pattern associated with clinical ambulatory capability
suggests that differences in the motor control could
determine the gait performance. Winters TF et. al also
classified the patients into the four groups and assessed
association with the usage of the orthosis by analyzing
kinematics data in the sagittal plane and EMG data in
hemiplegic CP with walking independently **, SPR can
improve gait performance in CP children with ambulatory
abilities. Our results also indicated that gaitline and
cyclogram patterns were improved after SPR in both
dependent and independent ambulators groups. Other
studies also revealed that SPR could significantly
improve foot contact patterns ** and ankle joint angles

during walking in children inflicted with CP ' ** %,
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Thus, SPR can facilitate a better gait pattern by
decreasing the plantar flexor spasticity and improving
motor control capacity.

According to our results, the BMCA of the lower
limbs of children inflicted with CP in a supine position
can be analyzed as seven different patterns which
resemble the findings of Tang '”! involving patients with
incomplete spinal cord injuries. Only one BMCA pattern
(pattern 1) was obtained in normal children, while six
BMCA patterns (patterns 2-7) were identified in all CP
children. Patterns 2 and 3 might be due to a lower
threshold for stretch reflex activation with premature
activities in distal muscles. Patterns 4 and 5 might be
due to a lower threshold for stretch reflex activation in
both proximal and distal muscles. Motor control
disorganization, characterized by disruption of the normal
sequential firing of leg muscles, was found in patterns 6.
Reduced EMG activity on volitional movement in pattern
7 was observed. Co-contraction of antagonist muscles in
both proximal and distal muscles (patterns 4 and 5)
interferes with the independent ambulatory capability. In
addition, diffuse co-contraction and co-activation of
bilateral muscles (pattern 6) with disruption of the normal
sequential firing of leg muscles interfere with both the
independent and dependent ambulatory capabilities.
Prominent weakness due to decreased EMG activities
(pattern 7) necessitates that the CP children use assisted
devices or braces to walk.

CP children with patterns 2 to 5 had better results, in
which patterns 6, 7 were difficult to find any
improvement after SPR. This is an important finding
because PEMG patterns may allow the physician to select
the appropriate spastic CP children to receive SPR with
satisfactory results. Our results indicate that SPR
improved the BMCA patterns both in the independent and
dependent ambulators groups, but not in the
non-ambulators group. This finding suggests that SPR
improved motor control for spastic CP children with
better motor control and ambulatory capability, but not
for those with poor motor control and ambulatory
capability. Most CP children with pattern 6 still required
a long leg brace or rigid AFO with walker to assist
walking even 2 to 3 years after surgery. Most children
with pattern 7 can not walk due to prominent weakness
following SPR 6 months later. They still walk depending
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on a long leg brace or rigid AFO with walker three years
after SPR. A related investigation has suggested that the
afferent input from the posterior nerve root ascends and
synapses with anterior horn cells at many levels of the
spinal cord, including the brainstem nuclei, thus
providing a theoretical basis for the reduction in spasticity
following SPR . Thus, SPR improved motor control
only for CP children with more selective control by
reducing segmental and suprasegmental afferent inputs ).
Some studies also reported that spasticity improved %%
26321 after SPR, while e other studies indicated that the
muscle activation patterns (EMG phasing) during walking
remained unchanged after SPR ",

In this study, the walking velocity, cadence, and step
length were increased significantly in the dependent
ambulators group after SPR, and only step length was
increased in the independent ambulator group. This
occurrence may be attributed to that five of the ten
children in the dependent ambulator group were
promoted to walk independently after SPR, contributing
to a significant increase in walking velocity, cadence, and
step length if still under the supporting walking condition.
Boscarino et al found that both the independent and
dependent ambulators groups significantly increased in
terms of stride length and reduction in cadence; however,
velocity did not significantly change . Vaughan et al
found a significant improvement in stride length at 1 year
postoperatively; velocity was not significantly increased
until 3 years after SPR, did not change significantly in
cadence P*!. Our parameters were normalized by body
height, Boscarino’s data were normalized by leg length,
and Vaughan’s data were not normalized. In addition, the
different normalization techniques were difficult to
compare the effect of SPR on gait parameters among
studies. This finding might be attributed to the diverse
gait patterns noted preoperatively. Some spastic diplegic
CP children walk very fast with a tip-toe gait, while some
are rather slow in velocity with a crouching gait.

Above results might present functional changes of
CP children that are not easily defined. Pries applied the
CDG system that was also used in this study for gait
analysis in children between one and five years old B*.
According to their results, this simple foot pressure
system can make a rapid and accurate quantitative
analysis of the major changes in gait organization. Our

previous study simplified the analysis of kinetic gait data
for CP children by using CDG. Based on the foot pattern
recognition, the gait patterns of the subjects can be
classified into four different patterns in both gaitline and
cyclogram which were parallel to the clinical evaluation
of CP on Minear’s classification of daily activities. The
correlation between gaitline and cyclogram pattern was
also significant !"”, However, according to pattern
recognition scores, improvements in gait postoperatively
became significant in terms of increase of foot contact
area and bipedal alternating patterns. Parents have
observed a post-SPR increase in their child’s endurance
during walking, which might be helpful in confirming
these findings objectively.

In conclusion, both the independent and dependent
ambulators groups significantly improved in terms of the
motor control and gait patterns in CP children one year
after SPR surgery. However, these progressions were

insignificant in the non-ambulators group.
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By = ¢ (1)48 2 47 #& 4 (independent ambulators) 5 (2)7 #5 B47 #& 48(dependent ambulators) ;5 (3)#&E4T4A
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RESEEE : NG M IR (cerebral palsy) » 3% 4F 1 B 7 48 4R by MR #7 (selective posterior rhizotomy)
1% $) 3% %] (motor control) » # A& 5 #7(gait analysis)
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