12-31-2016

Cervical Disc Herniation with Myelopathy Following Cervical Tuina Manipulation

Valeria Jia-Yi Chiu
Shu-Yuan Chou
Yu-Ting Hsieh
Yi-Shiung Horng

Follow this and additional works at: https://rps.researchcommons.org/journal

Part of the Rehabilitation and Therapy Commons

Recommended Citation
Chiu, Valeria Jia-Yi; Chou, Shu-Yuan; Hsieh, Yu-Ting; and Horng, Yi-Shiung (2016) "Cervical Disc Herniation with Myelopathy Following Cervical Tuina Manipulation," Rehabilitation Practice and Science: Vol. 44: Iss. 2, Article 6.
DOI: 10.6315/2016.44(2)06
Available at: https://rps.researchcommons.org/journal/vol44/iss2/6

This Case Report is brought to you for free and open access by Rehabilitation Practice and Science. It has been accepted for inclusion in Rehabilitation Practice and Science by an authorized editor of Rehabilitation Practice and Science. For more information, please contact twpmrscree@gmail.com.
Case Report

Cervical Disc Herniation with Myelopathy Following Cervical Tuina Manipulation

Valeria Jia-Yi Chiu,¹ Shu-Yuan Chou,² Yu-Ting Hsieh,³ Yi-Shiung Horng¹,⁴,⁵

¹Department of Rehabilitation Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City; ²Family Physician, Central Hill Medical Group, Taipei; ³Division of Physical Medicine and Rehabilitation, Lo-Hsu foundation, Inc., Lotung Po-Ai Hospital, I-Lan; ⁴Department of Medicine, Tzu-Chi University; Hualien; ⁵AOMA Graduate School of Integrative Medicine, Austin, Texas, USA.

Complications following cervical manipulation can be classified as cerebrovascular or noncerebrovascular complications. The former complications occur more frequently, and they are usually due to vertebral artery occlusion, damage or thrombus formation. The latter include spinal cord or nerve root injuries and have seldom been reported. Herniation of the cervical disc with myelopathy following manipulation is rare. However, we have encountered two patients who developed cervical disc herniation with myelopathy secondary to cervical tuina manipulation for nuchalgia at the bone setting facilities. One of the patients suffered from shooting pain during manipulation and developed tetraparesis two days later. An MRI examination revealed herniation of the intervertebral disc at the C4-5 level. Another patient suffered from right hemiplegia immediately after manipulation and was initially diagnosed with a cerebrovascular accident. Tetraplegia developed a few days later and an MRI study demonstrated herniation of the intervertebral disc at the C3-4 and C4-5 levels with prominent cord compression. Both patients underwent cervical discectomy with bone fusion and received rehabilitation therapy after the operation. They satisfactorily improved and could ambulate with a nearly normal gait without requiring an assistive device. The risk of cervical disc herniation with myelopathy following cervical manipulation cannot be overemphasized because an early diagnosis and timely intervention are vital. While skillful techniques and appropriate force need to be applied to the neck during manipulation, the same care must be taken to reduce the risk of complications following manipulation. (Tw J Phys Med Rehabil 2016; 44(2): 111 - 119)

Key Words: tuina manipulation, cervical disc herniation, cervical myelopathy, rehabilitation

INTRODUCTION

Cervical manipulation has been widely used to treat headaches, neck pain, and stiffness.¹ Previous literature has revealed that manipulation-induced complications are
mainly due to acute vascular incidents, which then lead to cerebellar or brainstem infarcts. Other neurological complications, such as myelopathy or radiculopathy, following cervical manipulation have only been sporadically reported. Among these cases, cervical disc herniation with myelopathy has seldom been mentioned, and its mechanism(s) remain controversial. We report two cases of cervical disc herniation accompanied by myelopathy following tuina manipulation at the bone setting facilities; we discuss the possible mechanisms leading to the complications induced by cervical manipulation and whether the complications could have been prevented.

CASE REPORT

Case 1

A 32-year-old woman suffered from two weeks of neck pain. She had no previous history of neck trauma. The patient underwent cervical manipulation two days prior to admission, and a sudden onset of severe neck pain during manipulation was noted. Within twenty-four hours after cervical manipulation, she experienced numbness and abnormal sensations, such as electrical shocks, in all four limbs during neck extension. In addition, increased urinary frequency and urgency occurred thereafter. On hospital admission, a physical examination revealed tetraparesis (muscle power grade 3 in four limbs by the manual muscle test) and an increase in the deep tendon reflex. Positive Babinski’s signs were found bilaterally. The cranial nerve examination was normal. Neck extension and right side rotation induced shooting pain in all limbs, and the neurological deficits progressed to urinary retention and tetraplegia within 48 hours. Radiographs of the cervical spine revealed negative findings. However, a magnetic resonance imaging (MRI) study revealed herniation of the intervertebral disc with cord compression at the C4-5 level (Figure 1A & 1B). A C4-5 discectomy with bone fusion was performed to relieve the compression, and improvement of the muscle weakness was noted two days later. The patient participated in a rehabilitation program that included muscle strengthening exercise and ambulation training. The patient was almost completely recovered within one month. When the patient was discharged, she could independently ambulate without the help of any assistive device and she had a nearly normal gait pattern. Her bladder function returned to normal.

Case 2

A 55-year-old woman suffered from neck pain for two months. She underwent cervical manipulation, but right-sided weakness and urinary incontinence developed immediately after the manipulation. She was sent to the hospital and diagnosed with a cerebrovascular accident. Brain CT showed negative findings. Tetraplegia (muscle power grade 1 in four limbs) developed a few days later. Radiographs of the cervical spine revealed cervical spondylosis. An MRI study disclosed herniation of the intervertebral discs with prominent cord compression at the C3-4 and C4-5 levels (Figure 2A, 2B & 2C). The patient underwent C3-4 and C4-5 discectomy with bone fusion. The muscle strength of all four extremities gradually improved, and continent voiding was regained three weeks later. She could ambulate with a walker after undergoing rehabilitation training for three months. One month later, she could ambulate without an assistive device and could independently perform daily activities.

DISCUSSION

Cervical disc herniation with myelopathy induced by cervical manipulation is a rare condition. It occurs less often than lumbar disc herniation because the posterior longitudinal ligament in the cervical spine is three to five times thicker and more developed than in either the thoracic or lumbar spine. Trauma or sudden strains are important causes of symptomatic cervical disc herniation, particularly in patients with symptoms that are present for less than one month. In this report, the two presented patients did not have any neurological deficits before manipulation. Case one experienced severe neck pain during manipulation, which was followed by numbness, an electric shock sensation, and urinary complications; the other case initially presented with right-sided weakness soon after the manipulation and she developed progressive weakness in all four limbs a few days later. Because of the temporal association between the manipulation and subsequent muscle weakness, these
cases of herniated cervical disc with myelopathy were considered directly related to the cervical manipulation.

Manipulation-induced spinal cord injuries are often attributed to a pre-existing disease of the spine, such as degenerative changes, osteomyelitis, tumor or ankylosing spondylitis; however, they may also occur in patients who lack pre-existing disease. We summarize the various conditions associated with myelopathy following cervical manipulation in Table 1. Tuina manipulation first consists of soft tissue relaxation with massage and acupressure techniques, which is followed by high velocity thrust and small amplitude bone setting techniques to restore the displaced spinal joint. According to the applied techniques, the manipulation can also involve rotation, traction or a combination of both. Therefore, the limit of extensibility of the annular fibers may be exceeded during manipulation if a disproportionate force with incorrect direction is applied. In cases with pre-existing disk degeneration, there is an increased risk of symptomatic disc herniation. In Case 2, the presence of degenerative changes is a contributing factor to the cervical disc herniation with resultant myelopathy following manipulation.

The causes of complications following manipulation may include misdiagnosis; the application of excessive forces; improper technique; preexisting vascular or bony abnormalities at the occipito-cervical junction; the presence of a herniated nucleus pulposus; and ignoring contraindications for manipulation, such as the presence of a tumor, infection, cervical myelopathy, intracranial hypertension, menigitis, verteobasilar insufficiency syndrome, severe osteoporosis, ankylosing spondylitis, rheumatoid arthritis, connective tissue disease, recent surgery, or anticoagulant therapy. Therefore, a detailed pre-manipulative assessment should be performed before treatment, including a combination of assessing the patient history and performing a comprehensive physical examination of active and passive cervical spine range of motion with upper cervical instability tests. Several factors, such as the rate and direction of force application, target of force, relative structural movement and position of the patients should be considered to determine an appropriate and safe technique.

Because there are multiple approaches to manipulation, ranging from gross and forceful rotation of the spine to the relatively gentle low-amplitude thrust technique, the practitioner must be well-trained in the anatomy, techniques and mechanisms of manipulation. The use of a precise force and proper technique need to be monitored scientifically to decrease the incidence of complications. When more forceful manipulation is contraindicated, soft tissue mobilizing techniques can also be considered. In contrast to low back pain treatment, mobilization is favored over manipulation in treating neck pain to reduce iatrogenic complications. If prolonged therapy becomes necessary, reevaluation after six to eight weeks is suggested because a laxity of ligaments may result from repeated stretching of the joints.

The limitations of this report is that neither reported case underwent imaging studies before receiving the manipulation at the bone setting facilities. Additionally, we did not have access to the methods of manipulation and we were unable to rule out the possibility of pre-existing cervical disc bulge or herniation before manipulation. In case one, MRI showed high signal over C4/5 central disc herniation, which favored an acute onset of disc herniation following manipulation. In case two, in addition to disc herniation at the C3/4 level, there might be a pre-existing degenerative disc with extrusion at the C4/5 level, which was aggravated by cervical manipulation and resulted in cord compression. Since cervical manipulation may aggravate preexisting cervical disc herniation, the presence of a herniated disc is considered a relative contraindication to cervical spinal manipulation. In the acute phase of cervical disc herniation with neurological deficits, cervical manipulation of the affected segment should be absolutely contraindicated; otherwise, there might be a high risk of massive disc prolapse or rupture with cord compression.

The example of these two patients reminds us that it is essential to perform a detailed evaluation and obtain a correct diagnosis before cervical manipulation is attempted. The risk of cervical disc herniation with myelopathy following spinal manipulation cannot be overemphasized because an early diagnosis and timely intervention are vital. Extensively screening for contraindications, carefully monitoring patients during manipulation and promptly diagnosing any complications
are mandatory to ensuring complete neurological recovery.

Case 1.

Figure 1A. Sagittal T1WI MRI shows disc extrusion at the cervical C4/5 level (arrow).

Figure 1B. Axial T2WI MRI confirmed C4/5 small central disc herniation (arrow).
Case 2.

Figure 2A. Sagittal T1WI MRI shows C3/4 (arrow) and C4/5 (arrowhead) discs extrusion compressing the cord.

Figure 2B. Axial T1WI MRI shows C3/4 central disc extrusion impinging upon the cord (arrow).
Figure 2C. Axial T1WI MRI confirms C4/5 disc extrusion effacing right side of the thecal sac and cord (arrowhead).

Table 1. Cases of Myelopathy Reported in Association with Cervical Manipulation

<table>
<thead>
<tr>
<th>Complication</th>
<th>Preexisting disease</th>
<th>No. of reported cases</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture-dislocation</td>
<td>Ankylosing spondylitis</td>
<td>5</td>
<td>14,15</td>
</tr>
<tr>
<td></td>
<td>Osteomyelitis</td>
<td>3</td>
<td>3,16</td>
</tr>
<tr>
<td></td>
<td>Carcinoma of the bronchus</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>2</td>
<td>3,15</td>
</tr>
<tr>
<td>Cord compression</td>
<td>Tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple myeloma</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Astrocytoma</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Meningioma</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Neurilemmoma</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Neurofibroma</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Spinal stenosis with OPLL</td>
<td>6</td>
<td>5,13,20,22,23,26</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Intraspinal hemorrhage</td>
<td>Multiple sclerosis</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>4</td>
<td>4,16,25</td>
</tr>
<tr>
<td>Spinal cord infarct</td>
<td>None</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>Cervical disk herniation</td>
<td>None</td>
<td>5</td>
<td>4,5,6,7</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

We gratefully acknowledge radiologist Wen-Ching Hsu, who gave us professional opinions of the patients’ image findings. This report was partially supported by a grant from Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation (TCRD-TPE-103-43).

REFERENCES

18. 刘耀宗、陳悅檉、梁秋萍等：不當推拿引起的頸部脊髓病變︰病例報告。中華民國復健醫學會雜誌 1992年;20:205-7。

頸椎徒手推拿後併發頸椎椎間盤突出及脊髓病變

邱佳儀 1 周淑媛 2 謝有丁 3 洪怡珣 1,4,5
台北慈濟醫院復健科 1 中崙聯合診所 2 羅東博愛醫院復健科 3 花蓮慈濟大學醫學系 4 AOMA 整合醫學研究所 5

頸椎徒手治療所導致的併發症可分為腦血管及非腦血管兩類併發症，前者較常發生，主要原因為椎動脈阻塞、血管壁損傷或血栓所致。後者的併發症包括脊髓或神經根損傷，較少文獻曾報導此類併發症。脊椎徒手治療後併發頸椎間盤突出及頸脊髓損傷極少發生，本文報導兩例此類案例。第一位案例於徒手推拿過程中突感由頭部向下延伸之刺痛，隔兩天發生四肢輕癱之症狀，核磁共振掃描顯示頸椎第四與第五椎間盤突出。第二位案例於徒手推拿後馬上發生右側肢體偏癱，最初被診斷為腦血管中風，但數天後病情發展到四肢輕癱，核磁共振掃描顯示頸椎第三與第四節與第五節椎間盤突出合併脊髓壓迫。兩位患者都接受頸椎間盤切除與骨融合手術，並且於術後進行復健治療，其運動功能皆恢復至不須輔具可獨立行走，步態也接近正常。雖然脊椎徒手治療後發生頸椎椎間盤突出合併脊髓壓迫的文獻報導不多，但仍應重視其發生之可能性，因爲早期的診斷和及時的介入對於預後相當重要。實行脊椎徒手治療除了需注意技術的正確熟練與力道之外，建議於整個治療過程及治療後仍需注意病人的症狀變化，給予適時的評估與治療以降低併發症。

關鍵詞：徒手推拿(tuina manipulation)，頸椎椎間盤突出(cervical disc herniation)，頸脊髓病變(cervical myelopathy)，復健(rehabilitation)

通訊作者：洪怡珣醫師，台北慈濟醫院復健科，23142 新北市新店區建國路 289 號 5 樓
電話：(02) 66289779 轉 3512 E-mail：yshorng2015@gmail.com doi: 10.6315/2016.44(2)06